GCE

Mathematics

Advanced GCE

Unit 4724: Core Mathematics 4

Mark Scheme for June 2011

OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a wide range of qualifications to meet the needs of pupils of all ages and abilities. OCR qualifications include AS/A Levels, Diplomas, GCSEs, OCR Nationals, Functional Skills, Key Skills, Entry Level qualifications, NVQs and vocational qualifications in areas such as IT, business, languages, teaching/training, administration and secretarial skills.

It is also responsible for developing new specifications to meet national requirements and the needs of students and teachers. OCR is a not-for-profit organisation; any surplus made is invested back into the establishment to help towards the development of qualifications and support which keep pace with the changing needs of today's society.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.
© OCR 2011
Any enquiries about publications should be addressed to:
OCR Publications
PO Box 5050
Annesley
NOTTINGHAM
NG15 0DL
Telephone: 08707706622
Facsimile: 01223552610
E-mail: publications@ocr.org.uk

1 Attempt to factorise both numerator \& denominator
Num $=$ e.g. $\left(x^{2}-1\right)\left(x^{2}-9\right)$ or $\left(x^{2}-2 x-3\right)\left(x^{2}+2 x-3\right)$
Denominator $=$ e.g. $\left(x^{2}-2 x-3\right)(x+5)(x+3)$
$\frac{x-1}{x+5}$ or $1-\frac{6}{x+5} \quad$ WWW
Alternative start, attempting long division
Expand denom as quartic \& attempt to divide $\frac{\text { numerator }}{\text { denominator }} \quad$ M1 but not divide $\frac{\text { denominator }}{\text { numerator }}$
Obtain quotient $=1 \&$ remainder $=-6 x^{3}-6 x^{2}+54 x+54 \mathrm{~B} 1$

M1 completely or partially
B1 or $(x-3)(x+3)(x-1)(x+1)$
B1 or $(x-3)(x+1)(x+5)(x+3)$
A1 4 ISW but not if any further 'cancellation'
numerator

Final B1 A1 available as before
$2^{2}+(-3)^{2}+(\sqrt{12})^{2} \quad$ soi e.g. 25 or 5
5
$\frac{1}{5}\left(\begin{array}{l}2 \\ -3 \\ \sqrt{12}\end{array}\right)$ or $\left(\begin{array}{l}\frac{2}{5} \\ -\frac{3}{5} \\ \frac{\sqrt{12}}{5}\end{array}\right)$ AEF

4

M1 Allow $2^{2}-3^{2}+\sqrt{12}^{2}$
A1 May be implied by 5 or $1 / 5$ in final answer
VA1 3 FT their ' 5 '. Accept $-\frac{1}{5}()$ or $\frac{1}{ \pm 5}()$
3
(i) The words quotient and remainder need not be explicit

Long division For leading term $3 x$ in quotient B1
Suff evidence of div process ($3 x$, mult back, attempt sub) M1
(Quotient) $=3 x-1$ A1
$($ Remainder $)=x \quad$ AG
Identity $\quad 3 x^{3}-x^{2}+10 x-3=Q\left(x^{2}+3\right)+R$
A1 4 No wrong working, partic on penult line
$Q=a x+b, R=c x+d \&$ attempt at least 2 operations dep*M1 If $a=3$, this $\Rightarrow 1$ operation
$a=3, b=-1$
$c=1, d=0$
Inspection $3 x^{3}-x^{2}+10 x-3=\left(x^{2}+3\right)(3 x-1)+x$
A1 No wrong working anywhere

Clear demonstration of LHS = RHS
B2 or state quotient $=3 x-1$
B2
(ii) Change integrand to 'their (i) quotient' $+\frac{x}{x^{2}+3}$

Correct FT integration of 'their (i) quotient'
$\int \frac{x}{x^{2}+3} \mathrm{~d} x=\frac{1}{2} \ln \left(x^{2}+3\right)$
Exact value of integral $=\frac{1}{2}+\frac{1}{2} \ln 4-\frac{1}{2} \ln 3$ AEF ISW A1 4 Answer as decimal value (only) \rightarrow A0

4 Indefinite integral Attempt to connect $\mathrm{d} x$ and $\mathrm{d} \theta$
Denominator $\left(1-9 x^{2}\right)^{3 / 2}$ becomes $\cos ^{3} \theta$
Reduce original integral to $\frac{1}{3} \int \frac{1}{\cos ^{2} \theta} \mathrm{~d} \theta$
Change $\int \frac{1}{\cos ^{2} \theta} \mathrm{~d} \theta$ to $\tan \theta$
Use appropriate limits for θ (allow degrees) or x
$\frac{\sqrt{3}}{9}$ AEF, exact answer required, ISW

M1 Incl $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=\frac{\mathrm{d} \theta}{\mathrm{d} x}=, \mathrm{d} x=\ldots \mathrm{d} \theta ;$ not $\mathrm{d} x=\mathrm{d} \theta$

B1

A1 May be implied, seen only as $\frac{1}{3} \int \sec ^{2} \theta \mathrm{~d} \theta$
B1 Ignore $\frac{1}{3}$ at this stage

M1 Integration need not be accurate
A1 6

6

5 (i) Attempt to set up 3 equations
$(s, t)=(-1,4)$ or $(-1,-3)$ or $\left(-\frac{10}{3},-\frac{2}{3}\right)$

M1 of type $4+3 s=1,6+2 s=t, 4+s=-t$
*A1 \quad or $s=-1 \&-\frac{10}{3}$ or $t=$ two of $\left(4,-3,-\frac{2}{3}\right)$

Show clear contradiction e.g. $3 \neq-4,4 \neq-3,-6 \neq 1 \quad$ dep*A1 3 Allow \checkmark unsimpl contradictions. No ISW.
SC If $s=\frac{-10}{3}$ found from $2^{\text {nd }} \& 3^{\text {rd }}$ eqns and contradiction shown in $1^{\text {st }}$ eqn, all 3 marks may be awarded.
(ii) Work with $\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)$ and $\left(\begin{array}{l}0 \\ 1 \\ -1\end{array}\right)$

M1

Clear method for scalar product of any 2 vectors
M1
Clear method for modulus of any vector
$79.1^{\left.()^{\circ}\right)}$ or better (79.1066..) 1.38 (rad) (1.38067..) ISW
(iii) Use $\left(\begin{array}{l}4+3 s \\ 6+2 s \\ 4+s\end{array}\right) \cdot\left(\begin{array}{l}3 \\ 2 \\ 1\end{array}\right)=0$

M1

Obtain $s=-2$
A is $\left(\begin{array}{l}-2 \\ 2 \\ 2\end{array}\right)$ or $-2 \mathbf{i}+2 \mathbf{j}+2 \mathbf{k}$ final answer

A1 from $12+9 s+12+4 s+4+s=0$

B1 3 Accept $(-2,2,2)$

10

6
$(1+a x)^{1 / 2}=1+\frac{1}{2} a x \ldots \ldots . \cdot+\frac{\frac{1}{2} \cdot \frac{1}{2}}{2}(a x)^{2}$
B1,B1 N.B. third term $=-\frac{1}{8} a^{2} x^{2}$

Change $(4-x)^{-1 / 2}$ into $k\left(1-\frac{x}{4}\right)^{-1 / 2}$, where k is likely to be $\frac{1}{2} / 2 / 4 /-2, \&$ work out expansion of $\left(1-\frac{x}{4}\right)^{-1 / 2}$
$\left(1-\frac{x}{4}\right)^{-/ / 2}=1+\frac{1}{8} x \quad \ldots . \quad+\frac{\frac{-1}{2} \cdot \frac{3}{2}}{2}\left(\frac{(-) x}{4}\right)^{2} \quad$ B1,B1 \quad N.B. third term $=\frac{3}{128} x^{2}$
OR Change $\{4-x\}^{1 / 2}$ into $l\left(1-\frac{x}{4}\right)^{1 / 2}$, where l is likely to be $\frac{1}{2} / 2 / 4 /-2, \&$ work out expansion of $\left(1-\frac{x}{4}\right)^{1 / 2}$
$\left(1-\frac{x}{4}\right)^{1 / 2}=1-\frac{1}{8} x-\frac{1}{128} x^{2} \quad$ B1 \quad (for all 3 terms simplified)
$k=\frac{1}{2}$ (with possibility of $\mathrm{M} 1+\mathrm{A} 1+\mathrm{A} 1$ to follow)
B1 $\quad l=2$ (with no further marks available)
Multiply $(1+a x)^{1 / 2}$ by $(4-x)^{-1 / 2}$ or $\left(1-\frac{x}{4}\right)^{-1 / 2}$
M1 Ignore irrelevant products
The required three terms (with/without x^{2}) identified as
$-\frac{1}{16} a^{2}+\frac{1}{32} a+\frac{3}{256}$ or $\frac{-16 a^{2}+8 a+3}{256}$ AEF ISW
$\mathrm{A} 1+\mathrm{A} 18 \mathrm{~A} 1$ for one correct term +A 1 for other two
SC B1 for $\frac{1}{4}\left(1-\frac{x}{4}\right)^{-1} ; \quad$ B1 for $\left(1-\frac{x}{4}\right)^{-1}=1+\frac{x}{4}+\frac{x^{2}}{16} ; \quad$ M1 for multiplying $(1+a x)$ by their $(4-x)^{-1}$. If result is $p+q x+r x^{2}$, then to find $\left(p+q x+r x^{2}\right)^{1 / 2}$ award B 1 for $p^{1 / 2}(\ldots \ldots)$,

B1 correct $1^{\text {st }} \& 2^{\text {nd }}$ terms of expansion, B1 correct $3^{\text {rd }}$ term;
$\mathrm{A} 1, \mathrm{~A} 1$ as before, for correct answers.
8

Attempt to sep variables in format $\int p y^{2}(\mathrm{~d} y)=\int \frac{q}{x+2}(\mathrm{~d} x)$ M1
Either $y^{3} \& \ln (x+2)$ or $\frac{1}{3} y^{3} \& \frac{1}{3} \ln (x+2) \quad$ A1 $+\mathrm{A} 1 \quad$ Accept $\frac{1}{3} \ln (3 x+6)$ for $\frac{1}{3} \ln (x+2) \&|\mid$ for ()

If indefinite integrals are being used (most likely scenario)
Substitute $x=1, y=2$ into an eqn containing ' + const'
Sub $\underline{y}=1.5$ and their value of 'const' \& solve for \underline{x} or q
x or $q=-1.97$ only
A2
[SC x or $q=-1.970$ or -1.971 or -1.9705 or -1.9706 A1] 7

If definite integrals are used (less likely scenario)
Use $\int_{1.5}^{2} \ldots \mathrm{~d} y=\int_{q}^{1} \ldots \mathrm{~d} x \quad$ where 2 corresponds with $1 \ldots . . \quad$ M2 $\quad \& 1.5$ corresp with q (at top/bottom or v.v.)
Then A2 or SC A1 as above
Use $\int_{1.5}^{2} \ldots \mathrm{~d} y=\int_{1}^{q} \ldots \mathrm{~d} x \quad$ where 2 corresponds with $q \ldots .$. M1 \& 1.5 corresp with 1 (at top/bottom or v.v.)
Then A1 for 1.97 only
where constants p and/or q may be wrong

8 Cartesian equation may be used in parts (i) - (iii) and corresponding marks awarded
(i) Sub parametric eqns into $y=3 x \&$ produce $t=-2$

OR sub $t=-2$ into para eqs, obtain $(-1,-3) \&$ state $y=3 x$
OR other similar methods producing (or verifying) $t=-2 \quad \mathrm{~B} 1$
Value of t at other point is $2 \quad \mathrm{~B} 12 \quad t= \pm 2$ is sufficient for B1+B1
(ii) Use (not just quote) $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\frac{\mathrm{d} y}{\mathrm{~d} t}}{\frac{\mathrm{~d} x}{\mathrm{~d} t}}$

M1
$=-(t+1)^{2}$
A1
or $\frac{-1}{x^{2}}$ or $\frac{-(2+y)}{x}$
Attempt to use $-\frac{1}{\frac{\mathrm{~d} y}{\mathrm{~d} x}}$ for gradient of normal
M1

Gradient normal $=1$ cao
A1
Subst $t=-2$ into the parametric eqns.
M1 to find pt at which normal is drawn
Produce $y=x-2$ as equation of the normal WWW A1 6 ' A ' marks in (ii) are dep on prev ' A '
(iii) Substitute the parametric values into their eqn of normal

Produce $t=0$ as final answer cao
N.B. If $y=x-2$ is found fortuitously in (ii) ($\& \therefore$ given A0 in (ii)), you must award A0 here in (iii).
(iv) Attempt to eliminate t from the parametric equations

M1
Produce any correct equation
A1 \quad e.g. $x=\frac{1}{y+2}$
Produce $y=\frac{1}{x}-2$ or $y=\frac{1-2 x}{x} \quad$ ISW
A1 3 Must be seen in (iv)
\{N.B. Candidate producing only $y=\frac{1}{x}-2$ is awarded both A1 marks. \}

9 (i) Treat $x \ln x$ as a product
Obtain $x_{0} \frac{1}{x}+\ln x$
Show $x \cdot \frac{1}{x}+\ln x-1=\ln x$ WWW AG

M1 If $\int \ln x$, use parts $u=\ln x, \mathrm{~d} v=1$
A1

A1 3 And state given result
(ii)(a) Part (a) is mainly based on the indef integral $\int(\ln x)^{2} \mathrm{~d} x$
[A candidate stating e.g. $\int(\ln x)^{2} \mathrm{~d} x=\int 2 \ln x \mathrm{~d} x$ or $=\int(\ln x-x)^{2} \mathrm{~d} x$ is awarded 0 for (ii)(a)]

Correct use of $\int \ln x \mathrm{~d} x=x \ln x-x$ anywhere in this part B1
Use integ by parts on $\int(\ln x)^{2} \mathrm{~d} x$ with $u=\ln x, \mathrm{~d} v=\ln x \quad$ M1

Quoted from (i) or derived or $u=(\ln x)^{2}, \mathrm{~d} v=1$
[For 'integration by parts, candidates must get to a $1^{\text {st }}$ stage with format $\mathrm{f}(x)+1-\int \mathrm{g}(x) \mathrm{d} x$]
$1^{\text {st }}$ stage $=\ln x(x \ln x-x)-\int \frac{1}{x}(x \ln x-x) \mathrm{d} x \quad$ soi
A1 $\quad x(\ln x)^{2}-\int x \cdot \frac{2}{x} \ln x \mathrm{~d} x$
$2^{\text {nd }}$ stage $=x(\ln x)^{2}-2 x \ln x+2 x$ AEF (unsimplified)

A1

\therefore Value of definite integral between $1 \& \mathrm{e}=\mathrm{e}-2$ cao
Use limits on $2^{\text {nd }}$ stage \& produce cao
Volume $=\pi(\mathrm{e}-2) \quad$ ISW
Answer as decimal value (only) $\rightarrow \mathrm{A} 0$
Alternative method when subst. $u=\ln x$ used
Attempt to connect $\mathrm{d} x$ and $\mathrm{d} u$ M1
Becomes $\int u^{2} \mathrm{e}^{u} \mathrm{~d} u$ A1

First stage $u^{2} \mathrm{e}^{u}-\int 2 u \mathrm{e}^{u} \mathrm{~d} u$ A1

Third stage $\left(u^{2}-2 u+2\right) e^{u}$ A1

Final A1 A1 available as before
(b) Indication that reqd vol $=$ vol cylinder - vol inner solid

Clear demonstration of either vol of cylinder being πe^{2}
(including reason for height $=\ln e$) or rotation of $x=e$
about the y-axis (including upper limit of $y=\ln e$)
$(\pi) \int x^{2} \mathrm{~d} y=(\pi) \int \mathrm{e}^{2 y} \mathrm{~d} y$
A1 Could appear as $\pi \int_{0}^{1} e^{2} \mathrm{~d} y$
$\frac{\pi\left(\mathrm{e}^{2}+1\right)}{2}$ or 13.2 or 13.18 or better
B1

B1 4 May be from graphical calculator

Possible helpful points

1. M is Method; does the candidate know what he/she should be doing? It does not ask how accurate it is.. e.g. in Qu.4, a candidate saying $\frac{\mathrm{d} x}{\mathrm{~d} \theta}=-\frac{1}{3} \cos \theta$ is awarded M1.
2. When checking if decimal places are acceptable, accept both rounding \& truncation.
3. In general we ISW unless otherwise stated.
4. The symbol $\sqrt{ }$ is sometimes used to indicate 'follow-through' in this scheme.

OCR (Oxford Cambridge and RSA Examinations)
1 Hills Road
Cambridge
CB1 2EU
OCR Customer Contact Centre
14-19 Qualifications (General)
Telephone: 01223553998
Facsimile: 01223552627
Email: general.qualifications@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England
Registered Office; 1 Hills Road, Cambridge, CB1 2EU
Registered Company Number: 3484466
OCR is an exempt Charity
OCR (Oxford Cambridge and RSA Examinations)
Head office
Telephone: 01223552552
Facsimile: 01223552553
© OCR 2011

